Parameter estimation and asymptotic stability in stochastic filtering

نویسنده

  • Anastasia Papavasiliou
چکیده

In this paper, we study the problem of estimating a Markov chain X(signal) from its noisy partial information Y , when the transition probability kernel depends on some unknown parameters. Our goal is to compute the conditional distribution process P{Xn|Yn, . . . , Y1}, referred to hereafter as the optimal filter. Following a standard Bayesian technique, we treat the parameters as a nondynamic component of the Markov chain. As a result, the new Markov chain is not going to be mixing, even if the original one is. We show that, under certain conditions, the optimal filters are still going to be asymptotically stable with respect to the initial conditions. Thus, by computing the optimal filter of the new system, we can estimate the signal adaptively.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic Parameter Estimation for a Class of Linear Stochastic Systems Using Kalman-Bucy Filtering

The asymptotic parameter estimation is investigated for a class of linear stochastic systems with unknown parameter θ : dXt θα t β t Xt dt σ t dWt. Continuous-time Kalman-Bucy linear filtering theory is first used to estimate the unknown parameter θ based on Bayesian analysis. Then, some sufficient conditions on coefficients are given to analyze the asymptotic convergence of the estimator. Fina...

متن کامل

Filtering and parameter estimation for a jump stochastic process with discrete observations

A compound Poisson process is considered. We estimate the current position of the stochastic process based on past discrete-time observations (non-linear discrete filtering problem) in Bayesian setting. We obtain bounds for the asymptotic rate of the expected square error of the filter when observations become frequent. The bounds are asymptotically free of process’ parameters. Also, estimation...

متن کامل

Robust stability of stochastic fuzzy impulsive recurrent neural networks with\ time-varying delays

In this paper, global robust stability of stochastic impulsive recurrent neural networks with time-varyingdelays which are represented by the Takagi-Sugeno (T-S) fuzzy models is considered. A novel Linear Matrix Inequality (LMI)-based stability criterion is obtained by using Lyapunov functional theory to guarantee the asymptotic stability of uncertain fuzzy stochastic impulsive recurrent neural...

متن کامل

انجام یک مرحله پیش پردازش قبل از مرحله استخراج ویژگی در طبقه بندی داده های تصاویر ابر طیفی

Hyperspectral data potentially contain more information than multispectral data because of their higher spectral resolution. However, the stochastic data analysis approaches that have been successfully applied to multispectral data are not as effective for hyperspectral data as well. Various investigations indicate that the key problem that causes poor performance in the stochastic approaches t...

متن کامل

Stochastic functional population dynamics with jumps

In this paper we use a class of stochastic functional Kolmogorov-type model with jumps to describe the evolutions of population dynamics. By constructing a special Lyapunov function, we show that the stochastic functional differential equation associated with our model admits a unique global solution in the positive orthant, and, by the exponential martingale inequality with jumps, we dis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008